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We study the small-scale behavior of generalized two-dimensional turbulence governed by a family of
model equations, in which the active scalar �= �−���/2� is advected by the incompressible flow u= �−�y ,�x�.
Here � is the stream function, � is the Laplace operator, and � is a positive number. The dynamics of this
family are characterized by the material conservation of �, whose variance ��2� is preferentially transferred to
high wave numbers �direct transfer�. As this transfer proceeds to ever-smaller scales, the gradient �� grows
without bound. This growth is due to the stretching term ��� ·��u whose “effective degree of nonlinearity”
differs from one member of the family to another. This degree depends on the relation between the advecting
flow u and the active scalar � �i.e., on �� and is wide ranging, from approximately linear to highly superlinear.
Linear dynamics are realized when �u is a quantity of no smaller scales than �, so that it is insensitive to the
direct transfer of the variance of �, which is nearly passively advected. This case corresponds to ��2, for
which the growth of �� is approximately exponential in time and nonaccelerated. For ��2, superlinear
dynamics are realized as the direct transfer of ��2� entails a growth in �u, thereby, enhancing the production
of ��. This superlinearity reaches the familiar quadratic nonlinearity of three-dimensional turbulence at �
=1 and surpasses that for ��1. The usual vorticity equation ��=2� is the border line, where �u and � are of
the same scale, separating the linear and nonlinear regimes of the small-scale dynamics. We discuss these
regimes in detail, with an emphasis on the locality of the direct transfer.
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I. INTRODUCTION

The production of progressively smaller scales, possibly
to be limited by viscous effects only, in incompressible fluid
flow at high Reynolds numbers is a fundamental problem in
fluid dynamics. This long-standing problem is of genuine
interest for obvious reasons. One is that the production of
small scales plays a key role in the possible development of
singularities from smooth initial conditions in the three-
dimensional �3D� Euler or Navier-Stokes equations that gov-
ern the flow. Another reason is that in the presence of a
large-scale forcing, a persistent production of small scales
would be crucial to maintain a spectral energy flux �direct
energy cascade�. The realizability of such a steady and
viscosity-independent flux is central to the Kolmogorov
theory of turbulence as this would be required to rid the
virtually inviscid energy inertial range of the injected energy,
thereby, making it possible for a statistical equilibrium to be
established. This dynamical scenario is either explicitly or
implicitly assumed to apply to other fluid systems as well,
not just the 3D Navier-Stokes equations. For example, in the
Kraichnan-Batchelor �1–3� theory of two-dimensional �2D�
turbulence, the dynamics of the mean-square vorticity �twice
the enstrophy� are assumed to be synonymous in many as-
pects to those of the 3D energy. In particular, the enstrophy
injected into the system at large scales is hypothesized to
cascade to a dissipation range at small scales. As another
example, the mean-square potential vorticity in the quasigeo-
strophic geophysical flow model is believed to behave in a
similar manner �4�. Thus “cascading dynamics” have been
considered universal among fluid systems.

The evolution of fluid flow is intrinsically nonlinear be-
cause of the quadratic advection term, which couples all
scales of motion. Apparently, this is an underpinning reason

for the cascade universality mentioned in the preceding para-
graph. However, the “effective degree of nonlinearity” of the
small-scale dynamics is not always quadratic and differs
from one system to another. The implication is that the pre-
sumed cascades would have fundamental differences and
would not be universal in a strict sense. For an example of
the discrepancy in the effective degree of nonlinearity among
fluid systems, let us consider the respective evolution equa-
tions for the 3D vorticity � and 2D vorticity gradient ��
given by

�t� + �u · ��� = �� · ��u, � · u = 0 �1�

and

�t � � + �u · �� � � = �n 	 �� − ��� · ��u, � · u = 0,

�2�

where u is the fluid velocity and n is the normal to the fluid
domain in 2D. The stretching term �� ·��u for the 3D vor-
ticity � in Eq. �1� is essentially quadratic in � because the
velocity gradient �u is expected to behave as � on phenom-
enological grounds. As a consequence, an explosive 3D vor-
ticity growth from a smooth initial vorticity field is possible,
if not inevitable �5,6�. In contrast, the stretching term
��� ·��u for the 2D vorticity gradient �� in Eq. �2� is vir-
tually linear in �� because �u is well behaved in the sense
that the mean-square vorticity ��2�= ���u�2� is conserved.
�Note that the rotation term �n	�� does not affect the
amplitude of ��.� As a result, the growth of 2D vorticity
gradients can possibly be approximately exponential in time
only, a relatively mild behavior. Hence, one would expect
profound differences between the �highly nonlinear� 3D vor-
ticity and the �nearly linear� 2D vorticity gradient dynamics.
A notable example of these differences is that in the inviscid

PHYSICAL REVIEW E 81, 016301 �2010�

1539-3755/2010/81�1�/016301�6� ©2010 The American Physical Society016301-1

http://dx.doi.org/10.1103/PhysRevE.81.016301


limit, the 2D enstrophy dissipation rate vanishes �7–9�,
whereas the 3D energy dissipation rate presumably remains
nonzero. Another example is the discrepancy in the depen-
dence on the Reynolds number of the number of degrees of
freedom in the two cases �10�.

The effective degree of nonlinearity in the above sense
differs not only between 2D and 3D fluids but also among
2D fluid systems. In this study, we investigate this varying
degree among members of a broad family of generalized
models of 2D turbulence, first introduced by Pierrehumbert
et al. �11�. By doing so, we extend several previous studies
�12–15�, aiming to unify our understanding of turbulent
transfer in physically realizable fluid systems. The family’s
dynamics are characterized by the material conservation of
the active scalar �= �−���/2�, whose variance ��2� is prefer-
entially transferred to high wave numbers �small scales�.
Here � is the stream function, � is Laplace’s operator, and �
is a positive number. As the transfer of ��2� proceeds to
ever-smaller scales, the gradient �� grows without bound.
This growth is due to the stretching term ��� ·��u, whose
effective degree of nonlinearity depends on � and is wide
ranging, from approximately linear to highly superlinear.
Linear behavior is realized when �u is a quantity of no
smaller scales than �, so that the transfer of ��2� to the small
scales �direct transfer� has no significant effects on �u. In
other words, � behaves nearly passively. This case corre-
sponds to ��2, for which �� can grow approximately ex-
ponentially in time without acceleration. For ��2, superlin-
ear dynamics can be realized as the direct transfer of ��2�
entails a growth in �u, thereby, enhancing the production of
��. This superlinearity reaches the familiar quadratic nonlin-
earity of three-dimensional turbulence at �=1 and exceeds
that for ��1. The usual vorticity equation ��=2� is the bor-
der line, where �u and � are of the same scale ����u�2�
= ��2��, separating the linear and nonlinear regimes of the
small-scale dynamics. We discuss these dynamical regimes
in detail, with an emphasis on the local nature of the transfer
of ��2�. The implication of the present results is that a com-
prehensive theory for this family of generalized 2D turbu-
lence needs to account for the wide range of effective de-
grees of nonlinearity of the family’s small-scale dynamics.

II. GOVERNING EQUATIONS

The equation governing the evolution of the family of
active scalars �= �−���/2� �for �
0� advected by the in-
compressible flow u= �−�y ,�x� is

�t + u · �� = 0. �3�

This equation was proposed by Pierrehumbert et al. �11� in
an attempt to better understand the nature of transfer locality
in 2D turbulence, by examining how turbulent transfer re-
sponses to changes in the parameter �. Equation �3� is physi-
cally relevant for selected values of �. The usual 2D vorticity
equation corresponds to �=2. When �=1, Eq. �3� is known
as the surface quasigeostrophic equation and governs the ad-
vection of the potential temperature, which is proportional to
�= �−��1/2�, on the surface of a quasigeostrophic fluid. In
addition to the genuine interest due to this physical signifi-

cance �12–20�, the surface quasigeostrophic equation has re-
ceived some special attention for its resemblance to the 3D
Euler system �21–24�. A mathematical feature of particular
interest is the possible development of finite-time singulari-
ties �from smooth initial conditions�, which, as argued by
pioneering studies �21,22,25� of this problem, could be asso-
ciated with the formation of weather fronts in the atmo-
sphere. This, however, appears not to be the case �26�.

For simplicity, we consider Eq. �3� in a doubly periodic
domain of size L, and all fields concerned are assumed to
have zero spatial average. This allows us to express the
stream function as

��x,t� = �
k

�̂�k,t�exp	ik · x
 . �4�

Here k=2�L−1�kx ,ky�, where kx and ky are integers not si-

multaneously zero. The reality of � requires �̂�k , t�= �̂��
−k , t�, where the asterisk denotes the complex conjugate. The
fractional derivative �−���/2 �which can be readily extended
to ��0, though not considered in this study� is defined by

��x,t� = �− ���/2��x,t� = �
k

k��̂�k,t�exp	ik · x


= �
k

�̂�k,t�exp	ik · x
 , �5�

where k= �k� is the wave number. Equation �3� expresses ma-
terial conservation of �, which gives rise to an infinite set of
conserved quantities. In particular, the generalized enstrophy
�active scalar variance�

Z =
1

2
��2� =

1

2
���− ���/2��2� =

1

2�
k

k2���̂�k,t��2 �6�

is conserved. In addition, the generalized energy

E =
1

2
���� =

1

2
���− ���/4��2� =

1

2�
k

k���̂�k,t��2 �7�

is also conserved. Note that E is the usual kinetic energy
when �=2, while Z is the usual kinetic energy when �=1.
Only for these cases is the kinetic energy conserved. The
modal powers �spectra� of E and Z differ by the factor k�.
Therefore, the redistribution of a non-negligible amount of E
to small scales would violate the conservation of Z. Simi-
larly, the redistribution of a non-negligible amount of Z to
large scales would violate the conservation of E. This means
that if a spectrally localized profile is to spread out in wave-
number space, most of E and Z get transferred to large and
small scales, respectively. This is the basis for the dual cas-
cade hypothesis in 2D turbulence. Here we are mainly con-
cerned with the direct transfer of Z. A more complete treat-
ment should include the inverse transfer of E as well since
these are known to be intimately related.

Given Eq. �4�, we can express u= �−�y ,�x� in terms of a
Fourier series in the form
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u�x,t� = i�
k

�− ky,kx��̂�k,t�exp	ik · x
 . �8�

By substituting Eqs. �5� and �8� into Eq. �3�, we obtain the

evolution equation for each individual Fourier mode �̂�k , t�
=k��̂�k , t� of the conserved quantity �

d

dt
�̂�k,t� = �

�+m=k

�m� − ���� 	 m

��m� �̂��,t��̂�m,t� , �9�

where �	m=�xmy −�ymx. The sum on the right-hand side of

Eq. �9� involves all modes �except �̂�k , t�� and is a measure

of the level of “excitation” of the mode �̂�k , t� due to all
admissible wave vector triads k=�+m. For a given triad, the
coupling coefficient �m�−����	m / ���m�� depends on �.
Its magnitude, together with the magnitudes of the coupling

coefficients in the governing equations for �̂�� , t� and

�̂�m , t�, is a measure of triad dynamical activity, in the sense
that larger �in magnitude� coupling coefficients correspond to
more intense modal dynamics. This is intimately related to
the effective degree of nonlinearity and locality of the small-
scale dynamics as will be seen in the subsequent sections.

III. EFFECTIVE DEGREES OF NONLINEARITY OF THE
SMALL-SCALE DYNAMICS

We now examine the behavior of ��. Generally speaking,
any derivative �−����, for �
0, can be called a small-scale
quantity. Here we consider ��, which is a “twin brother” of
�−��1/2�, for its special status in Eq. �3� as well as its math-
ematical tractability. For �=2, a similar treatment of ��=
−�� can be carried out in the same manner.

A. Growth of the active scalar gradient

The governing equation for �� is

�t � � + �u · �� � � = � 	 u 	 �� − ��� · ��u , �10�

which can be obtained by replacing � in Eq. �2� by �. Like
Eq. �2�, the effect of the first term on the right-hand side of
Eq. �10� is to rotate �� without changing its magnitude. The
amplification of �� is due solely to the stretching term
��� ·��u and is governed by

�t���� + �u · ������ = −
��

����
· ��� · ��u 
 ��u����� .

�11�

Equation �11� implies that following the fluid motion, ����
can grow exponentially in time with an instantaneous rate
bounded from above by ��u�. Hence, the behavior of ��u�
holds the key to understanding the dynamics of ��. Evi-
dently, following the trajectory of a fluid “particle” starting
from x=x0 at t=0, the growth of ���� is formally constrained
by

���� 
 ���0�exp��
0

t

��u�d�
 , �12�

where �0=��x0 ,0� and the integral is along the trajectory in
question. Hence, on average, the rate r defined by

r =
1

t
�

0

t

��u�d� �13�

provides an upper bound for the exponential growth rate of
����. Note that for �=1 ����u�2�= �����2��, a double expo-
nential growth of ���� is allowed but not necessarily implied
by the preceding equations. Nevertheless, it is interesting to
note that Ohkitani and Yamada �24� observed such a behav-
ior in their simulations, thereby, suggesting a negative an-
swer to the question of finite-time singularities in the surface
quasigeostrophic equation. This is consistent with the proof
of nonexistence of blowup by Córdoba �26�.

B. Linear versus nonlinear growth of ��

Now for a sense of the behavior of r, we consider
���u�2�1/2, which bounds ���u�� from above by the Cauchy-
Schwarz inequality ���u��
 ���u�2�1/2. For �� �2,4�,
���u�2�1/2 can be estimated in terms of the inviscid invariants
using the following version of the Hölder inequality �see, for
example, Sec. 5 of Ref. �14��:

���u�2�1/2 
 ���− ���/4��2�1−2/����− ���/2��2�2/�−1/2

= E1−2/�Z2/�−1/2. �14�

So ���u�2�1/2 is controlled by the inviscid invariants E and Z.
For �� �2,4�, inequality �14� reverses direction. Further-
more, if an initial distribution of � is to forever spread out in
wave-number space, ���u�2�1/2 increases without bound for
this case. This implies that there exist different regimes of �,
for which �u evolves quite differently, and the active scalar
gradient dynamics can be characteristically distinct. We dis-
cuss all these regimes in what follows.

For ��2, the divergence of ���u�2�1/2 entails an acceler-
ated growth of �� from an exponential one. This is the su-
perlinear regime discussed in the introductory section. This
superlinearity reaches the usual quadratic nonlinearity of 3D
turbulence at �=1, where ���u�2�= �����2�. Hence, the sur-
face quasigeostrophic and 3D Euler equations are analogous
in this aspect. However, the analogy appears to be superficial
as the surface quasigeostrophic equation turns out to be far
more “manageable” than its 3D counterpart: a consequence
of the material conservation of �. For example, a number of
global regularity results have been proved for the surface
quasigeostrophic equation, by making use of mild dissipation
mechanisms represented by �−��� with ��1 /2 �27–30�,
which can be much weaker than the usual viscosity. Whereas
for the 3D Navier-Stokes system, viscosity appears to be
inadequate for the same purpose. For ��1, this quadratic
nonlinearity is surpassed as the ratio ���u�2� / �����2� diverges
in the limit �����2�→� because

�����2�2−� 
 ���u�2���2�1−� �15�

�cf. Ref. �14��. Active scalar gradient production can then
become highly intense.

For �� �2,4�, �u is well behaved in the sense that its
mean square is bounded from above in terms of the inviscid
invariants �see Eq. �14��. In this case, �u is virtually unaf-
fected by the direct transfer of ��2�. At large t, a general fluid
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trajectory is likely to have traversed the domain many times.
The time average in Eq. �13� may therefore be approximately
replaced by the spatial average. Hence, we can write

r � ���u�� 
 ���u�2�1/2 
 E1−2/�Z2/�−1/2, �16�

where we have used the Cauchy-Schwarz inequality and Eq.
�14�. This approximation of r means that �� can grow expo-
nentially in time without acceleration. Thus, approximately
linear small-scale dynamics can be expected. Note that �
behaves almost as a passive scalar in this regime. The anal-
ogy between this case and that of a passive scalar was sug-
gested by Schorghofer �12� on phenomenological grounds.

When �
4, inequality �14� reverses direction, and
���u�2�1/2 can no longer be controlled by the inviscid invari-
ants. However, unlike the case ��2, for which ���u�2�1/2

diverges toward small scales, when �
4 velocity gradients
can be produced at increasingly large scales only. This pro-
duction depends on the inverse transfer of the generalized
energy E �14�. Within the direct transfer range, i.e., the gen-
eralized enstrophy range, the portion of ���u�2�, say �, can-
not increase and instead remains bounded from above in
terms of Z. More precisely, as the spectra of ���u�2� and Z
differ by the factor k2�−4, we have �
2k�

4−2�Z �Poincaré
type inequality�, where k� is the lower wave-number end of
the generalized enstrophy range. This suggests that no sig-
nificant changes in the effective degree of nonlinearity of the
small-scale dynamics occur when � exceeds 4. Thus, we can
expect approximately linear small-scale behavior for all �
�2.

In passing, it is worth mentioning that while the small-
scale dynamics appear to be insensitive to � in the regime
�
2, the large-scale dynamics can vary dramatically. The
reason is that for large �, u is prone to divergence toward
large scales as the inverse transfer of E proceeds. This un-
doubtedly intensifies motions at large scales. One may adapt
the present notion of degree of nonlinearity for a quantitative
measure of the large-scale dynamics. Analogous to the tradi-
tional problem of regularity, which is concerned with the
possible divergence of ��, there is a potential problem that u
becomes divergent for sufficiently large � if the fluid is un-
bounded. This interesting problem is left for a future study.

IV. LOCALITY OF THE SMALL-SCALE DYNAMICS

This section is concerned with the small-scale dynamics
at the modal level. We establish a connection between the
degree of nonlinearity and dynamical activity of typical local
triads at small scales. Here the dynamical activity of a given
triad is associated with the magnitude of the coupling coef-
ficients within the triad and is independent of the amplitude
of the three modal members. These local triads are shown to
be highly active for ��2 and moderately active for �=2 but
become virtually inactive for �
2. This implies that higher
effective degrees of nonlinearity correspond to more dynami-
cally intense local triads. Thus, the effective degree of non-
linearity is also a measure of dynamical activity of local
triads at small scales. The transition at �=2 from high activ-
ity to virtually no activity of local triads is consistent with
phenomenological arguments �11� that the generalized en-

strophy cascade is spectrally local for ��2 but becomes
dominated by nonlocal interactions for �
2. Below, we also
examine the dynamics of nonlocal triads and elaborate on the
nature of the locality transition, in order to provide a detailed
picture of the direct transfer of ��2� at the modal level.

Within each individual triad k=�+m, the transfer of
modal generalized enstrophy is governed by

d

dt
��̂�k��2 =

�m� − ���� 	 m

m���

	��̂����̂�m��̂��k� + �̂�����̂��m��̂�k��

= Ck��̂����̂�m��̂��k� + �̂�����̂��m��̂�k�� ,

d

dt
��̂����2 =

�k� − m��� 	 m

k�m�

	��̂�k��̂��m��̂���� + �̂��k��̂�m��̂����

= C���̂�k��̂��m��̂���� + �̂��k��̂�m��̂���� ,

d

dt
��̂�m��2 =

��� − k��� 	 m

��k�

	��̂�k��̂�����̂��m� + �̂��k��̂����̂�m��

= Cm��̂�k��̂�����̂��m� + �̂��k��̂����̂�m�� , �17�

where we have used the identities �	m=�	k=k	m and
suppressed the time variable. It is well known that both E
and Z are conserved for each individual triad. This can be
readily verified by the fact that the coupling coefficients in
Eqs. �17�, Ck, C� and Cm, satisfy

Ck + C� + Cm = 0 =
Ck

k� +
C�

�� +
Cm

m� .

Furthermore, the transfer of E and Z is from the intermediate
wave number to both the larger and smaller wave numbers or
vice versa �note the signs of the coupling coefficients�. The
former behavior appears to have been observed in numerical
simulations of 2D turbulence without exception.

We now analyze the coupling coefficients Ck, C� and Cm
in detail. As crude estimates that hold in general, these can
be bounded by �assuming k� l�m�

�Ck� =
��m� − ���� 	 m�

m��� � k�1−�,

�C�� =
��k� − m��� 	 m�

k�m� � �k1−�,

�Cm� =
���� − k��� 	 m�

��k� � �k1−�. �18�

where we have used ��	m�= ��	k�
k�. Similar estimates
were obtained in �20� �for �=1,2� and in �31� �for �=1�. For
�
2, local triads �i.e., k���m� at small scales are effec-
tively “turned off” because all Ck, C� and Cm tend to zero in
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the limit k→�. Furthermore, the convergence is as rapid as
k2−�. An immediate interpretation of this observation is that
local triads can be relatively ineffective in the direct transfer
of ��2� compared with their nonlocal counterparts �see be-
low�. At the critical value �=2, Ck, C� and Cm can remain
order unity for local triads that satisfy ��	m��k2 and �m�

−�����k�−m������−k���k�. A majority of local triads sat-
isfy both of these conditions. They are neither “ultrathin” nor
nearly isosceles and correspond to relatively sharp estimates
in Eqs. �18�, which reduce to �Ck���C����Cm��1. This
means that local triads at small scales in the usual vorticity
equation are moderately active. They can play a significant
role in the direct transfer. Finally, for ��2, the interaction
coefficients of these same triads diverge as k→�. Their di-
vergence can be seen to be as rapid as k2−�. This result sug-
gests that for this case, local triads can play an overwhelm-
ingly dominant role in the direct transfer.

Next, we turn to nonlocal triads. These are thin triads with
the wave numbers k, � and m satisfying k���m. For this
case, Ck, C� and Cm can be estimated as follows:

�Ck� =
��m� − ���� 	 m�

m��� �
�k2

�� ,

�C�� =
��k� − m��� 	 m�

k�m� � �k1−�,

�Cm� =
���� − k��� 	 m�

��k� � �k1−�. �19�

In the limit �→� �while k���, Ck vanishes, but both C�

and Cm �C��−Cm� diverge as rapidly as �. This implies a
vigorous exchange of generalized enstrophy between the two
neighboring wave numbers � and m, mediated by a virtually
nonparticipating distant wave number k. This ultralocal
transfer by nonlocal interactions is virtually independent of �
as the divergence of C� and Cm is insensitive to �. This result
implies that local transfer by nonlocal interactions is an in-
trinsic characteristic of this family of 2D turbulence models.
Note, however, that this transfer can be significant only when
the spectrum of the generalized enstrophy is not steeper than
k−1 �32�. In other words, the generalized enstrophy needs to
be physically present at small scales in order to facilitate
such a transfer. This suggests that for �
2 �recall that local
triads are dynamically inactive�, the generalized enstrophy
spectra can plausibly scale as k−1 because steeper spectra are
unable to support a non-negligible direct transfer. This uni-
versal scaling was suggested by Schorghofer �12� and Wa-
tanabe and Iwayama �15�. Their justification is that � can be
considered as a passive scalar, a view in accord with the
present analysis.

In passing, it is worth mentioning that the divergence of
C� and Cm in nonlocal triads is probably the reason for nu-
merical instability in simulations of 2D turbulence with in-

adequate diffusion because local triads with coupling coeffi-
cients of order unity are evidently well behaved. Support for
this claim can be derived from common observations that
numerical divergences occur as soon as the modes in the
vicinity of the truncation wave number are excited and well
before they acquire any considerable amount of enstrophy.
The same instability problem persists for �
2, although the
weak activities of local triads in this case may reduce the
severity of the instability to a certain extent.

V. CONCLUDING REMARKS

We have presented the notion of effective degree of non-
linearity to quantify the small-scale dynamics of a family of
generalized models of two-dimensional turbulence governed
by a broad class of nonlinear transport equations. Here, the
active scalar �= �−���/2� ��
0� is advected by the incom-
pressible flow u= �−�y ,�x�, where � is the stream function.
We have argued that although the advection term is qua-
dratic, the effective degree of nonlinearity of the small-scale
dynamics is not always quadratic and depends on �. It has
been found that the active scalar gradient dynamics are vir-
tually linear for ��2 and become nonlinear for ��2. Fur-
thermore, the degree of nonlinearity increases as � is de-
creased from 2, becoming quadratic at �=1 and exceeding
quadratic nonlinearity for ��1. It is conceivable that cred-
ible theories of the family’s dynamics, particularly, those in-
volving small scales, need to account for the dependence on
� of the effective degree of nonlinearity.

We have also found that local triads at small scales are
highly active for ��2, moderately active for �=2, and vir-
tually inactive for �
2. On the other hand, nonlocal triads
are characterized by a vigorous exchange of generalized en-
strophy between pairs of neighboring wave numbers, medi-
ated by the third nonparticipating distant wave number. This
property is common for all �, thereby, implying that nonlocal
interactions �but ultralocal transfer� can be considered uni-
versal. In the absence of local triad activity ��
2�, this ul-
tralocal transfer is responsible for the direct transfer of gen-
eralized enstrophy. This is similar to the problem of passive
scalar transport by a large-scale flow as the weak feedback
on the advecting flow by the active scalar can be neglected
�32�. In this case, it appears plausible that generalized enstro-
phy spectra scale as k−1.

The local nature of the generalized enstrophy transfer can
be seen to be unambiguous in the present study. In general,
this transfer is local in wave-number space regardless of
what types of triads make the most contribution. For local
triads, the generalized enstrophy transfer is inherently local.
For nonlocal interactions, the transfer is even “more” local,
having a relatively higher degree of locality compared to the
transfer by local triads. More importantly, the transfer be-
tween distant wave numbers is largely insignificant. Hence, it
makes sense to speak of the degree of locality of the direct
generalized enstrophy transfer rather than to distinguish be-
tween local and distant transfers.
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